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QUASILINEARIZATION AND THE SOLUTION OF
NONLINEAR DESIGN PROBLEMS IN STRUCTURES
UNDERGOING CREEP DEFORMATIONS

NESTOR DISTEFANOT

University of California, Berkeley, California

Abstract—A class of multipoint-value problems involving generally nonlinear integro-differential equations of
Volterra type, arising in applications of structural design in the presence of nonlinear creep is formulated and
thoroughly investigated. First, a nonlinear multipoint-value problem is formulated and solved algorithmically by
quasilinearization. This is done in Sections 2 and 3. Relaxation of design specifications yields a class of optimiza-
tion problems whose solution is then outlined in Section 4. Sections 5-7 are devoted to computational aspects. In
Section 6, a method to overcome some of the computational drawbacks of the classical Newton-Raphson-—
Kantorovich sequence in function space, is presented and applied to the problem under consideration. Section 7
deals with the reduction of large systems of Volterra integral equations to initial-value differential systems, while
in Section 8 a numerical example is presented to illustrate the application and feasibility of the method.

1. INTRODUCTION

IN A recent paper [1] we have studied the solution of a nonlinear Volterra integral equation
in the context of creep—buckling problems by means of a quasilinearization procedure.
Here we extend the results of that analysis by considering a class of multipoint-value
problems involving nonlinear integro-differential equations. Systems of this type arise
naturally during the treatment of design and optimum-design problems in structures
undergoing nonlinear creep deformations.

The equations of evolution of the system are given by (1) in the form of a generally
nonlinear Volterra integral equation in terms of the state variable u(t), a vector of arbitrary
dimension N. A general design problem is then formulated by adding a set of design
specifications to the original dynamical system (1). First, a multipoint-value problem in
terms of the augmented state vector u and design parameters c, is stated and algorithmically
solved by quasilinearization. This is done in Sections 2 and 3.

Relaxation of design specifications yields a class of optimization problems whose
solution is outlined in Section 4. Sections 5-7 are devoted to computational aspects. In
Section 6, a method to overcome some of the computational drawbacks of the classical
Newton—Raphson—-Kantorovich sequence in function space is presented and applied to
the problem under consideration. Section 7 deals with the reduction of large systems of
Volterra integral equations to initial-value differential systems, while in Section 8 a numeri-
cal example is presented to illustrate the application and feasibility of the method.

2. GENERAL DESIGN PROBLEM

Let v(¢) and u(t) be two N-dimensional vectors representing a mechanical input—output
pair of a given structure undergoing nonlinear creep deformations. In a number of cases the
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nonlinear functional relationship between u and v can be represented by the following
nonlinear Volterra integral equation

v(t) = h(u, ¢) + J-t F(t - t)g(u, ¢) dr, (1)
0

where F is an N x N matrix, h and g are N-dimensional vectors and ¢ is M-dimensional
denoting the design vector. Typically, equation (1) arises when a conveniently discretized
structure, in place of the original continuous one, is considered. Vector h accounts for the
instantaneous response of the structural system, while the convolution term accounts for
hereditary effects. Both vector functions h and g are assumed to be generally noniinear,
possessing all the continuity and convexity properties required in the subsequent analysis.
The general nonlinear nature of h and g may be the consequence of both geometrical and
material nonlinearities.

Generally, v is given while u must be computed together with the unknown design
vector ¢. Clearly, this problem is indeterminate unless appropriate additional information
regarding the nature of the solution is provided. This is generally accomplished by adjoining
a number of analytical design specifications of the form

kfut) =d;, 0<t<T, j=12...,M, (2)

where T is the duration of the process. Now the design problem has a precise formulation
in the form of the multipoint-value problem given by (1) and (2). Assuming that this problem
has a solution and it is unique, we can compute ¢ and u via a number of quasilinear
procedures. The main purpose of this paper is to derive algorithmic solutions for this
problem and to thoroughly discuss their numerical feasibility in the framework of digital
computation.

3. QUASILINEARIZATION

Assuming the necessary convexity properties, h and g appearing in equation (1) can be
represented in terms of the maximum operation, i.e.

h(ll, C) = H:E;X(h(xs Y) + Hu(xa Y) (l,l - X) + Hc(x’ Y) (C - y))a (3)
g(u,¢) = ngX(g(x, Y+ G X, Y)u—-x)—GAx, y)(c—~y)), 4)

where H,. H_, G, and G, are Jacobians given by

oh;
H, = —’) ihj=1,2,...N,
Ou;
Oh; . .
H. = {—]. i=12,...N and j=12,...M, (5)
oc;
G, = ig») ij=1,2...N.
U;
08; , .
G, = |==]. i=1,2,...N and j=12...M,
dc;

where h;. g;, u; and ¢; are the components of vectors h, g, u and ¢, respectively.
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Introducing the integral operator L given by
1
Lo x.) = Hx st | Fle—0Gx. yu dr, 8
0

linear in u, substitution of (3) and (4) in (1) yields
Lu, x, y)+ K(X, y)¢ < v—-a(x,y), N

where vector @ and matrix K are given by

X, y) = h(x, y)— Hy(x, )X — H(x, y)y + f F(t - g(x. y) de
{ o ®)
- f Fit— 9G.(x, y)x dr— f F(t— G, y)y de
G 0

and

K(x,y) = Hx.y)+ f F(t — 7Gx, ) dr, )

respectively.

The integral inequality given by equation (7) can now be used to generate a variety of
successive approximation schemes. For example, let u'™ and ¢™ be the nth iterate of vectors
u and ¢, respectively. Then the system given by

L(“(n + 1}’ u(’”, ciﬂ)} + K{uini’ c"'}}c(" D oy {:)(u{”’, c(”}} ( 10)
where u"* V) satisfies the multipoint conditions
K ey =d,  j=12...M, (11)

and where u® and ¢/ are arbitrary initial estimates, is immediately recognized to be the
Newton—Raphson—Kantorovich scheme applied to our original system (1) and (2) [2]. It is of
interest to note that these equations (10) could be directly derived by substituting g and h
in equation (1) by the truncated functional expansions

h(u, ¢) = h(u™, ¢)+ H, @™, cM){u"* Y —u") + H (", )" "V — ) (12)
and

g, ©) = g™, ¢®) + G, )"+ H—u®) 4 G @™, e™)(c D _ ), (13)
respectively.

The sequences u* and ¢™ given by equations (10) and (11) are known to be quadratically
convergent when convergent at all. In general, convergence of the sequences will depend
on the convexity of the operator in the neighborhood of the fixed point u, ¢ and the relative
distance of the initial estimates u‘® and ¢'© to u and ¢, respectively. If, additionally, the
integral operator enjoys some monotone property in the neighborhood of the solution, one
can expect some monotonic behavior of the approximating sequences.

Our next step now is to derive an algorithmic solution for the problem given by equa-
tions (10) and (11). This is easily done in view of the linearity of the integral operator (10).
In fact, let U"*V be the N x M fundamental matrix satisfying the linear system

L{U“ﬁ ;;’ u{a)} c{u}} o K(u"", c(n}}’ (14)
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and let z* D be the N-dimensional vector solution of
Lz D u™, ¢™) = v— (™, ™). (15)
Then u™* ¥ in equation (10) can be written
u(n+1) — Z("+1)+U("+1)C(n+l), (16)

a representation of u”*!) linear in ¢*!, Equations (11) provide the M conditions to
determine vector ¢""* ! appearing in equation (16). If the functions k; are linear in u(t,),
then substitution of (16) in (11) yields a linear system of equations in the components of
vector ¢, In general, a nonlinear system must be solved at each step of iteration. The
process is continued until convergence is achieved.

Before considering a variety of interesting problems associated with the computational
feasibility of equations (14) and (15), we shall be concerned with some questions derived
from specific design considerations.

4. RELAXATION OF DESIGN SPECIFICATIONS

In general, the set of design specifications given by equations (2) are either very difficult
or impossible to satisfy exactly. In fact, conditions for the existence of a solution of the
multipoint value problem given by (1) and (2) might be too restrictive to be of interest on
engineering grounds; therefore, the interest in reformulating the problem in a slightly
modified manner such as to account for more realistic design considerations. This can be
done in several ways. Here we only indicate one possible path of action, namely, the sub-
stitution of an exact multipoint-value problem by an approximated one via the application
of some optimization procedure. For example, if we denote with k and d the vectors whose
components are k; and d;, respectively, instead of equation (2) we wish to consider the less
stringent conditions

min| k(u)—d| amn

where ||x| denotes the norm of x defined in a suitable manner. As usual, candidates for
norms are, among others, the least squares

fT (k(u) —d)["(k(n) —d) dt (18)
4]

where the upper bar indicates transpose and I is a matrix, or the Chebyshev norm

max |k(u)—d|. (19)
0<t<T

It is clear that the same procedure derived in previous sections is applicable to the problem
formulated here. For example, if k is linear in u, substitution of (16) in (18) yields a linear least
square problem while substitution of (16) in (19) and further minimization yields a minimax
problem that can be solved by standard linear programming procedures. In general, a
number of techniques are available to treat the nonlinear case.

Optimal design
The success of quasilinearization as applied in this work relies on the ability to exhibit
an explicit dependence of u upon the design vector ¢ at each step of iteration. This permits the
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formulation of an algebraic problem for ¢ by using the given design specifications such as in
equation (2) or the objective functions in equations (18) and (19). It is then clear that along
the same lines a variety of problems arising in the theory of optimum structural design
can be solved. For example, integral side conditions such as those arising from limitation
of volume of the structure can be handled by Lagrange multipliers or Courant parameters,
thus reducing the problem of optimal design to one similar to that treated in this paper.
Problems of this kind will be treated separately.

5. COMPUTATIONAL ASPECTS

We have shown how a quasilinearization scheme can be used to effectively solve a
variety of design and optimum design problems. It remains now to discuss computational
feasibility in connection with the use of a digital computer. In fact, several difficulties may
arise in connection with the numerical solution of the equations. In the first place, a straight-
forward numerical solution of the fundamental system given by equations (14) and (15)
would generally require storage capacity for the present and previous iteration of vector
u(t) over the whole interval of interest 0 < t < T. This is due to the fact that Newton’s
method requires knowledge of the previous approximation, while the solution of systems of
linear Volterra equations would require the storage of the present approximation. If the
dimensions of N and M are relatively large, storage can be a severe limitation. Thus, the
need for special consideration of feasible numerical schemes. This is presented in the
following two sections.

6. AN ALTERNATIVE QUASILINEARIZATION SCHEME

The fundamental system given by equations (14) and (15) can be regarded as a system of
N(M +1) linear integral Volterra equations in u®* ", whose forcing terms and kernels
depend on the previous approximation u®™. This implies knowledge of vector u™ during
the computation of the n + 1 approximation. A different way of looking at the same problem
is to consider the augmented (n+4 1)N(M + 1) system given by

L(U(i+ 1)’ “(i)’ c(i)) - — K(u(i}’ c(f)) (20)
and
Lz, ¢ = v— e, cV), i=01,...n4+1, 2n

where ¢? is an initial estimate of the design vector and u'® is an initial estimate for u, which
can be computed from the equation

t
v = h(u®, ¢ +f F(t — 1)g®, ¢ @) dx, (22)
0

or by any other procedure. Clearly, this method avoids the necessity of storing the previous
approximation, because at any stage n+1, not only u”* ! but also u™, "V, ., u®
are being computed simultaneously.
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At the same time that this method reduces storage, especially if the integral equations
are reduced to differential equations, it requires the solution of a larger number of equations,
namely,

In(n+ HNM + 1)

for n iterations, in contrast with the N(M + 1) equations required when the previous
approximation is available. This is not a severe limitation if » is small, but in any case it is
convenient to seek alternative methods which do not present those restrictions. To overcome
most of the difficulties of time and storage previously discussed in connection with the
Newton-Raphson-Kantorovich approach in function space, equation {7} can be used as
the starting point to implement an alternative quasilinear procedure. The basic idea of this
method is the following: instead of using the last approximation in place of x in equation
{7), we compute a function x(y) as the solution of the original functional equation (1),
where the design vector ¢ is replaced by the last approximation obtained for y. In this
fashion we are led to solve at each step of iteration, the following system

LU Y x, ¢™) = —K(x, ¢™),

L™V x, ™) = v—(x, ¢™), (23)
hix, c"")+j F{r—t)g(x, M dr = v,
0

Clearly, substitution of U"* " and 2"V given by equations (23) in (16) yields the desired
new approximation for u. This approach is particularly powerful if it is used in conjunction
with the reduction of equations (23) to a system of ordinary differential equations, a tech-
nique to be treated in the next section.

The sequence generated by this method is indeed quadratically convergent when
convergent at all. Abundant numerical experimentation has shown to the author of this
work the merits of the present approach. However, it was found in a number of cases that the
success of this method relies on the availability of a better estimate for the design vector ¢
than is required when the Newton-Raphson-Kantorovich scheme is used.

7. REDUCTION TO INITIAL-VALUE DIFFERENTIAL SYSTEMS

Straightforward quadrature techniques for the solution of the integral-initial-value
problem given by the system of integral equations (14}, (15) or (20), {21} or {23} require
storage of the function currently computed over the whole interval, 0 < ¢ < T, [3]: thus,
the interest in transforming this problem into a differential-initial-value problem. This
can be done in a number of ways. As an illustration, we consider a scalar nonlinear integral
equation of the type

u(t)+ f f(t—1)gu)dr = (o), (24)
0

If the kernel f{z) is given as an expansion of exponential functions of the form

R
fly= 3% e (25)
i=1
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then the reduction to a differential form is immediate. In fact, substitution of (25) in (24)
yields

u(t) = o(t)— il c;z{t), (26)
where the functions N
z{t) = e " J: 2(u(t)) e"* dr, i=12...R, (27)
clearly satisfy the differential equations
Gtz = o) 28)
or, on account of equation (26),
%+r,«z,~=g(v—§:cjzj), i=12...R (29)

a coupled, nonlinear system of differential equations of order R subject to the initial con-
ditions
z{0) = 0. (30)

When, instead of a scalar integral equation such as (24), we consider a system of N x N of
such equations, the number of differential equations which will result is R x N2, The number
of ordinary differential equations that can be integrated in a routine way on a digital
computer is of the order of several thousands. This gives an idea of the size of the problem
that can be treated by this method.

A severe limitation of the method just described is the requirement that f in equation
(24) be given in terms of exponentials. When the kernel is not originally available in the
form given by equation (25), an approximated expansion must be obtained. This approxima-
tion is unfortunately not a routine matter [4]. A method to circumvent the difficulties
associated with the approximation of functions with exponentials was presented in [5]
and [6] in connection with the identification problem in viscoelasticity.

8. EXAMPLE
In [1] it has been shown that the deflections u(f) in the middle of an axially-loaded H
column undergoing nonlinear creep deformations whose o — ¢ law is given by

g = a/E+Jﬂ (6/E*3f(t—1)d1, (31)
0

where f, a kernel associated with the primary creep of the material, is given by equation
(25), E is the instantaneous modulus of elasticity and E* a material constant defining the
rate of creep in the secondary stage, satisfies the following nonlinear integral Volterra
equation

u(t)— 4 J: Bu+ud)f(t—1)dr =y (32)
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where 4 and y are coefficients involving a number of geometrical and mechanical parameters
whose specification is not essential in this example. Clearly, equation (32) uniquely deter-
mines u(t) in the semi-open interval 0 <t < ¢, where t,, is the critical time, when A and
y are given. Our problem here is to compute the value of A for which the deflection u reaches
a prescribed value d at a given time ¢, < r,. Following the procedure given at the end of
Section 6, we consider the linearized equation for ®™*

1
pn+ 1) 3 m f 1+ 0"Vt —1)dr
0

(33)
= y+3l‘"’f (I+vPf(t—1)dr—A"* ”f Bu+v)ft—1)de
1] 4]
where v is the solution of
v-i""f Be+vY)f(t—1)de = y. (34)
o]

The auxiliary condition is the design specification

um0(,) = d. (35)

We consider now functions 4" and 4§+ 1 satisfying

t 1

u‘{’”)—?»l‘”’j T+t Yt —1)dr = y+3i""f (1+v2f(t—1)dr (36)
0 0
and

u‘f“’»?))f"’f T+ t—1dr = -—j Gv—v?ft—1)d, (37)
0 0

respectively. Clearly we have

u(n+ 1) u(1n+ 1)+i(n+1)u(2n+l). ) (38)

Using equations (35) and (38), we can immediately compute the value of the design param-
eter at the n+ 1 iteration by means of

d—u* 1)
ug* (t,)

for which it is necessary to compute the values of uf"*" and u§*" at ¢t = t,. To do so,

we first reduce equations (34), (36) and (37) to a system of ordinary differential equations.
Remembering that f is given by equation {25), we introduce the following functions

A(:H—l) = (39)

t

x; = e""‘f (1+ vV erdr, (40)
0
t

y; = e”""f (1+v2ug* Ve dr, (41
0
13

7= e""‘J (Bv+v¥edr, (42)
0

1
w; = e“"‘“f (1+v3eedr, i=1,2,...R, 43)
0
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where to simplify the notation the superscript n+1 indicating the number of the iteration
has not been written. Clearly, these four functions satisfy the following system of differential
equations

%);i +rx; = (1+ 172)14(1”+ b, x{0) = 0, (44)
dy, 2y, (n+ 1)

”&‘{4"';‘}’1' = (1 +p )142 , _V‘(O} == O; (45)
dz, 2

E;+f,-2,- ={3+vw, z{0) = 0, (46)
do; 2
5 o= {1+, w{0) = 0, (47)

i =1,2,... R Functions p, u{* " and «¥* " in equations (34), (36} and (37) can be written
in terms of x;, y;, z; and w,, i.¢.

R
v=y+A" Y ¢z, (48)
/=1
R
Wit =y 434 Z cfx;+z), (49)
i1
R
Wl = ¥ ef3,-0) (50)
=

Equations (48)-(50) follow from the substitution of (40}{43) in (34}, {36) and (37). Now,
integration of the differential initial-value {44)-{47) together with the auxiliary equations
(48)+{50) yields the two fundamental solutions u{"** and u§'* !’ from which 1**" can be
computed using equation (39).

This procedure is now illustrated numerically by the following example. We consider
the kernel f(t) given by

fly=1403e ' +02e™ {31)

and y = 1, 4 = 0-100. Then equation (32), conveniently reduced to a system of ordinary
differential equations subject to initial values, vields a deflection u(¢). The critical time for
this problem was found to be approximately 1., = 1-78. The deflection u at 1 = 1 was found
to be

u(l) = 1.50490, {52)

Using (52) as a design specification, we integrate the system given by equations (44}-(47)
together with the auxiliary equations (39), (48)-(50). The initial approximation for A was
taken to be A'? = (-15. The integration was performed with an Adams—-Moulton scheme
using 0-01 as the step of integration over the interval (0, 1). Six iterations were necessary to
repeat five significant places in the deflection u{t) and the design parameter 1. In general, the
number of iterations for a given accuracy will depend on the initial approximation used for
A. The values of the design parameter A at each step of the iterative process is given in the
table below:
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TABLE 1

n }(M

Initial estimate 01500

i 01338
2 01154
3 01036
4 0-1004
5 0-1000

The associated deflection histories are presented in Fig. 1.

3.98

INITIAL ESTIMATE )Ems 0150
EXACT VALUE A =0.400
DESIGN SPECIFICATION u{1}=190490
CRITICAL TIME T~ 178

ult)

i
T

uit)

284

222

.97
a{i}=190

MIDOLE DEFLECTION

¢ } J I 1 { 1 i i L
0 [¢X] 0.2 03 0.4 05 08 oy 08 09 t=i
TIME 1t

FiG. 1. Deflection histories associated with each iteration.

9. CONCLUSIONS

The main purpose of this study has been to present a thorough treatment of the numerical
solution of a class of nonlinear Volterra integro-differential systems associated with prob-
lems of structural design in the presence of nonlinear creep.

The study comprises the mathematical formulation of a family of structural design
problems and its numerical treatment by using ideas of quasilinearization and differential
approximation. An efficient quasilinear procedure, that eliminates the need to store the
previous numerical approximation, has been introduced in combination with the reduction
of Volterra integral equations to differential equations subject to initial values, in an effort
to overcome problems of storage typically associated with systems of Volterra equations.

The example of Section 8 has been presented to familiarize the reader with the applica-
tion of the method. The accuracy of the numerical procedures in the present example is
stressed, particularly in view of the fact that the design parameter 1 is an unstable functional
of the deflection history (2}, 0 < t < 1, as t, approaches the critical time t,, thus making
the determination of 4 a highly sensitive process.
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AGcrpakTt—IIpennaraercs ¥ TIUATENBHO HMCCIEAYETCA KJIACC 3a4a4 MHOTOTOYEHBIMX 3HAY€HuHl, BbI3bIB-
al0lMX BOOOIUE HeluHEHHbIE HHTErpanbHO-gudpdepeHiManbibie ypaBHeHUs THna BoOJIBTEpPPbI, ABIR-
IOLMMHCS Pe3y/IbTaTOM MPUMEHEHHWH, NMPH pacye€Tax KOHCTPYKLMHA, yuyeTa HEJIMHEHHOM NON3YyYecTH.
Cuavana, GOpMYIMPYETCA M PELIAETCH aNroOpuMHUIECKH, MyTEM KBa3MIHHEAPH3ALNH, HEIMHERHAs 3aKa4a
MHOIOTOYEHHOr0 3Ha4YeHUs. 31O MpeasoXkeHo B 4acTax 2 u 3. Penaxcauua moapo6HOCTEH npoekTHpo-
BaHHA JAET KJIACC ONTHMAJIH3ALMH, PELLIEHHE KOTOPOTO MOAYEPKHYTO B YacTH 4, YacTtu 5, 6 M 7 MOCBALLEHBI
pacyeTHBIM acnekTam. B Yactu 6, DAaETCA M NMPHMEHATCS K 3aJa4€, IPU HEKOTOPBIX YCIIOBMAX, METOR AJIS
yyera HEKOTOPHIX HEJOCTAaTKOB K/IacCHYeckoro wuccrenoBaHue HbtoTona-Padcona-Kantoposuya B
hyHKUMOHANBHOM ItpocTpakcTBe. YacTh 7 kacaeTcs cBeaeHus 6ObLIMX CUCTEM WHTErpajibHEIX YDABHEHHH
BoasTeppsl x auddepeHUManbHbIM CUCTEMaM C HavyallbHBIMU 3HaueHusmH. B wactu 8 npeacrasnsercs
YUCJIOBBIA NPHUMED IS UILTIOCTPALMH IPHMEHUMOCTH METOA.



