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QUASILINEARIZATION AND THE SOLUTION OF
NONLINEAR DESIGN PROBLEMS IN STRUCTURES

UNDERGOING CREEP DEFORMATIONS

NESTOR DISTEFANOt

University of California, Berkeley, California

Abstract-A class of multipoint-value problems involving generally nonlinear integro-differential equations of
Volterra type, arising in applications of structural design in the presence of nonlinear creep is formulated and
thoroughly investigated. First, a nonlinear multipoint-value problem is formulated and solved algorithmically by
quasilinearization. This is done in Sections 2 and 3. Relaxation of design specifications yields a class of optimiza
tion problems whose solution is then outlined in Section 4. Sections 5-7 are devoted to computational aspects. In
Section 6, a method to overcome some of the computational drawbacks of the classical Newton-Raphson
Kantorovich sequence in function space, is presented and applied to the problem under consideration. Section 7
deals with the reduction of large systems of Volterra integral equations to initial-value differential systems, while
in Section 8 a numerical example is presented to illustrate the application and feasibility of the method.

l. INTRODUCTION

IN A recent paper [1] we have studied the solution of a nonlinear Volterra integral equation
in the context of creep-buckling problems by means of a quasilinearization procedure.
Here we extend the results of that analysis by considering a class of multipoint-value
problems involving nonlinear integro-differential equations. Systems of this type arise
naturally during the treatment of design and optimum-design problems in structures
undergoing nonlinear creep deformations.

The equations of evolution of the system are given by (1) in the form of a generally
nonlinear Volterra integral equation in terms of the state variable u(t), a vector of arbitrary
dimension N. A general design problem is then formulated by adding a set of design
specifications to the original dynamical system (1). First, a multipoint-value problem in
terms of the augmented state vector u and design parameters c, is stated and algorithmically
solved by quasilinearization. This is done in Sections 2 and 3.

Relaxation of design specifications yields a class of optimization problems whose
solution is outlined in Section 4. Sections 5-7 are devoted to computational aspects. In
Section 6, a method to overcome some of the computational drawbacks of the classical
Newton-Raphson-Kantorovich sequence in function space is presented and applied to
the problem under consideration. Section 7 deals with the reduction of large systems of
Volterra integral equations to initial-value differential systems, while in Section 8 a numeri
cal example is presented to illustrate the application and feasibility of the method.

2. GENERAL DESIGN PROBLEM

Let v(t) and u(t) be two N-dimensional vectors representing a mechanical input-output
pair ofa given structure undergoing nonlinear creep deformations. In a number of cases the
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(1)

nonlinear functional relationship between u and v can be represented by the following
nonlinear Volterra integral equation

v(t) = h(u, c) +LF(t - r)g(u, c) dr,

where F is an N x N matrix, hand g are N-dimensional vectors and c is M-dimensional
denoting the design vector. Typically, equation (1) arises when a conveniently discretized
structure, in place of the original continuous one, is considered. Vector h accounts for the
instantaneous response of the structural system, while the convolution term accounts for
hereditary effects. Both vector functions hand g are assumed to be generally nonlinear,
possessing all the continuity and convexity properties required in the subsequent analysis.
The general nonlinear nature of hand g may be the consequence of both geometrical and
material nonlinearities.

Generally, v is given while u must be computed together with the unknown design
vector c. Clearly, this problem is indeterminate unless appropriate additional information
regarding the nature ofthe solution is provided. This is generally accomplished by adjoining
a number of analytical design specifications of the form

Os t; s T, j = 1,2, .. . ,M, (2)

where T is the duration of the process. Now the design problem has a precise formulation
in the form of the multipoint-value problem given by (1) and (2). Assuming that this problem
has a solution and it is unique. we can compute c and u via a number of quasilinear
procedures. The main purpose of this paper is to derive algorithmic solutions for this
problem and to thoroughly discuss their numerical feasibility in the framework of digital
computation.

3. QUASILINEARIZAnON

Assuming the necessary convexity properties, hand g appearing in equation (1) can be
represented in terms of the maximum operation, Le.

h(u, c) = max(h(x, y)+ Hu(x, y)(u-x)+Hix, y)(c-y»,
x.y

g(u, c) = max(g{x, y)+Gu(x, y)(u-x) Gix, y)(c-y»,
x.y

where H u , Hn Gu and Gc are Jacobians given by

(3)

(4)

H = (Oh i
)

u ou
j

'
i, j = 1,2, ... N,

He (Oh} i = 1,2, ... N and j = 1,2, ... M,oCj

Gu
(Og;) , i, j = 1,2, ... N.

iJUj

Gc
(Ogi) , i = 1,2, ... N and j = 1, 2, ... M,
iJcj

where hi' gi' Uiand Ci are the components of vectors h, g, u and c, respectively.

(5)
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Introducing the integral operator L given by

L(u, x, y) = Hu(x,y)u+ {F(t-r)Gix, y)u dr,

linear in u, substitution of(3) and (4) in (1) yields

L(u, x, y)+ K(x, y)e s v- ro(x, y),

where vector ro and matrix K are given by

ro(x, y) = h(x, y) - Hu(x, y)x - Hix, y)y + { F(t - r)g(x, y) dr

-f~ F(t-r)Gu(x, y)x dr- f~ F(t-r)G...(x,y)ydr

and

K(x, y) = Hix, y) + { F(t - r)GC<x, y) dr,

(6)

(7)

(8)

(9)

(10)

respectively.
The integral inequality given by equation (7) can now be used to generate a variety of

successive approximation schemes. For example, let u(n) and e(n) be the nth iterate of vectors
u and e, respectively. Then the system given by

L(u(n+ 1), Uln), e(n» + K(u(nl, eln')eln +1) = v _ro(U(n1, eln1)

where u(n+ 1) satisfies the multipoint conditions

kiuln+ o(t;) = dj , j = 1,2, ... M, (11)

and where ulO) and e(O) are arbitrary initial estimates, is immediately recognized to be the
Newton-Raphson-Kantorovich scheme applied to our original system (1) and (2) [2]. It is of
interest to note that these equations (10) could be directly derived by substituting g and h
in equation (1) by the truncated functional expansions

and

g(u, c) ~ g(uln), cln» + Gu(u(n), c1n')(uln +1) - uln» + G...(u(n), e{n»(c{n +11_ C(n,), (13)

respectively.
The sequences uln)and eln)given by equations (10) and (11) are known to be quadratically

convergent when convergent at all. In general, convergence of the sequences will depend
on the convexity of the operator in the neighborhood of the fixed point u, e and the relative
distance of the initial estimates u(O) and e(O) to u and c, respectively. If, additionally, the
integral operator enjoys some monotone property in the neighborhood of the solution, one
can expect some monotonic behavior of the approximating sequences.

Our next step now is to derive an algorithmic solution for the problem given by equa
tions (10) and (11). This is easily done in view of the linearity of the integral operator (10).
In fact, let vtn + 1) be the N x M fundamental matrix satisfying the linear system

(14)
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and let z(n+ I) be the N-dimensional vector solution of

L(z(n+ 1), urn), ern)) = v-ro(u(n), ern)).

Then u(n+ I) in equation (10) can be written

u(n+ I) = z(n+ I) +u(n+ I)e(n+ 1),

(15)

(16)

a representation of urn +I) linear in e(n +1). Equations (11) provide the M conditions to
determine vector e(n+ 1) appearing in equation (16). If the functions k j are linear in u(t;),
then substitution of (16) in (11) yields a linear system of equations in the components of
vector e(n+ 1). In general, a nonlinear system must be solved at each step of iteration. The
process is continued until convergence is achieved.

Before considering a variety of interesting problems associated with the computational
feasibility of equations (14) and (15), we shall be concerned with some questions derived
from specific design considerations.

4. RELAXAnON OF DESIGN SPECIFICAnONS

In general, the set of design specifications given by equations (2) are either very difficult
or impossible to satisfy exactly. In fact, conditions for the existence of a solution of the
multipoint value problem given by (1) and (2) might be too restrictive to be of interest on
engineering grounds; therefore, the interest in reformulating the problem in a slightly
modified manner such as to account for more realistic design considerations. This can be
done in several ways. Here we only indicate one possible path of action, namely, the sub
stitution of an exact multipoint-value problem by an approximated one via the application
of some optimization procedure. For example, if we denote with k and d the vectors whose
components are kj and dj , respectively, instead of equation (2) we wish to consider the less
stringent conditions

minllk(u)-dll
c

(17)

(18)

where Ilxll denotes the norm of x defined in a suitable manner. As usual, candidates for
norms are, among others, the least squares

{T (k(u)-d)r(k(u)-d) dr

where the upper bar indicates transpose and r is a matrix, or the Chebyshev norm

max Ik(u)-dl.
O,,;t,,;T

(19)

It is clear that the same procedure derived in previous sections is applicable to the problem
formulated here. For example, ifk is linear in u, substitution of(16) in (18) yields a linear least
square problem while substitution of(16) in (19) and further minimization yields a minimax
problem that can be solved by standard linear programming procedures. In general, a
number of techniques are available to treat the nonlinear case.

Optimal design

The success of quasilinearization as applied in this work relies on the ability to exhibit
an explicit dependence ofu upon the design vector e at each step ofiteration. This permits the
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formulation ofan algebraic problem for c by using the given design specifications such as in
equation (2) or the objective functions in equations (18) and (19). It is then clear that along
the same lines a variety of problems arising in the theory of optimum structural design
can be solved. For example, integral side conditions such as those arising from limitation
of volume of the structure can be handled by Lagrange multipliers or Courant parameters,
thus reducing the problem of optimal design to one similar to that treated in this paper.
Problems of this kind will be treated separately.

5. COMPUTATIONAL ASPECTS

We have shown how a quasilinearization scheme can be used to effectively solve a
variety of design and optimum design problems. It remains now to discuss computational
feasibility in connection with the use of a digital computer. In fact, several difficulties may
arise in connection with the numerical solution of the equations. In the first place, a straight
forward numerical solution of the fundamental system given by equations (14) and (15)
would generally require storage capacity for the present and previous iteration of vector
u(t) over the whole interval of interest 0 s; t s; T. This is due to the fact that Newton's
method requires knowledge of the previous approximation, while the solution of systems of
linear Volterra equations would require the storage of the present approximation. If the
dimensions of Nand M are relatively large, storage can be a severe limitation. Thus, the
need for special consideration of feasible numerical schemes. This is presented in the
following two sections.

6. AN ALTERNATIVE QUASILINEARIZATION SCHEME

The fundamental system given by equations (14) and (15) can be regarded as a system of
N(M + 1) linear integral Volterra equations in u(n+1), whose forcing terms and kernels
depend on the previous approximation urn). This implies knowledge of vector urn) during
the computation ofthe n +1 approximation. A different way oflooking at the same problem
is to consider the augmented (n + l)N(M + 1) system given by

and

(20)

i = 0, 1, ... n+ 1, (21)

where e(O) is an initial estimate of the design vector and u(O) is an initial estimate for u, which
can be computed from the equation

(22)

or by any other procedure. Clearly, this method avoids the necessity of storing the previous
approximation, because at any stage n+ 1, not only u(n+ 1) but also urn), u(n-1), .•• ,u(l)

are being computed simultaneously.
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(231

At the same time that this method reduces storage, especially if the integral equations
are reduced to differential equations, it requires the solution ofa larger number ofequations,
namely,

!n(n + 1)N(M + 1)

for n iterations, in contrast with the N(M + 1) equations required when the previous
approximation is available. This is not a severe limitation if n is small, but in any case it is
convenient to seek alternative methods which do not present those restrictions. To overcome
most of the difficulties of time and storage previously discussed in connection with the
Newton-Raphson-Kantorovich approach in function space, equation (7) can be used as
the starting point to implement an alternative quasilinear procedure. The basic idea of this
method is the following: instead of using the last approximation in place of x in equation
(7), we compute a function x{y) as the solution of the original functional equation (1),
where the design vector c is replaced by the last approximation obtained for y. In this
fashion we are led to solve at each step of iteration, the following system

L{u(n+ 0, x, c(n» - K(x, c(n»,

L(Z(II+ 1), X, c(n» = v-ro(x, c(n»,

h(X,C(II~)+ {F(t-r)g(x,C(n»dr = v.

Clearly, substitution of Utn+ 1) and Z(II+ 1) given by equations (23) in (16) yields the desired
new approximation for u. This approach is particularly powerful if it is used in conjunction
with the reduction of equations (23) to a system of ordinary differential equations, a tech
nique to be treated in the next section.

The sequence generated by this method is indeed quadratically convergent when
convergent at all. Abundant numerical experimentation has shown to the author of this
work the merits of the present approach. However, it was found in a number ofcases that the
success of this method relies on the availability of a better estimate for the design vector c
than is required when the Newton--Raphson-Kantorovich scheme is used.

7. REDUCTION TO INITIAL-VALUE DIFFERENTIAL SYSTEMS

Straightforward quadrature techniques for the solution of the integral-initial-value
problem given by the system of integral equations (14), (15) or (20), (21) or (23) require
storage of the function currently computed over the whole interval, 0 :s:; t :s:; T, [3]: thus,
the interest in transforming this problem into a differential-initial-value problem. This
can be done in a number of ways. As an illustration, we consider a scalar nonlinear integral
equation of the type

u(t)+ f: f(t - r)g(u) dr v(t).

If the kernel f(t) is given as an expansion of exponential functions of the form

R

f(t) = L: Ci e -'it,

i~ I

(24)

(25)
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then the reduction to a differential form is immediate. In fact, substitution of (25) in (24)
yields

R

u(t) = v(t) - L ciz;(t),
i= 1

(26)

where the functions

z;(t) = e-r,t Lg(u(r)) e',t dr,

clearly satisfy the differential equations

dz.
-'+r.z. = g(u)
dt " '

i = 1,2, ... R, (27)

(28)

(29)i = 1,2, ... R

or, on account of equation (26),

dz. (R)-dI +riZ; = g v - L C jZj ,
t 1

a coupled, nonlinear system of differential equations of order R subject to the initial con
ditions

Zi(O) = O. (30)

When, instead of a scalar integral equation such as (24), we consider a system of N x N of
such equations, the number ofdifferential equations which will result is R x N 2

. The number
of ordinary differential equations that can be integrated in a routine way on a digital
computer is of the order of several thousands. This gives an idea of the size of the problem
that can be treated by this method.

A severe limitation of the method just described is the requirement that f in equation
(24) be given in terms of exponentials. When the kernel is 'not originally available in the
form given by equation (25), an approximated expansion must be obtained. This approxima
tion is unfortunately not a routine matter [4J. A method to circumvent the difficulties
associated with the approximation of functions with exponentials was presented in [5J
and [6J in connection with the identification problem in viscoelasticity.

8. EXAMPLE

In [1] it has been shown that the deflections u(t) in the middle of an axially-loaded H
column undergoing nonlinear creep deformations whose a - e law is given by

(31)e = ajE+ f~ (ajE*)3f(t-r) dr,

where f, a kernel associated with the primary creep of the material, is given by equation
(25), E is the instantaneous modulus of elasticity and E* a material constant defining the
rate of creep in the secondary stage, satisfies the following nonlinear integral Volterra
equation

u(t) - A. f~ (3u +u3)f(t - r) dr = ')' (32)
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where Aand yare coefficients involving a number ofgeometrical and mechanical parameters
whose specification is not essential in this example. Clearly, equation (32) uniquely deter
mines u(t) in the semi-open interval 0 :-s; t < ter' where ter is the critical time, when). and
'Yare given. Our problem here is to compute the value of), for which the deflection u reaches
a prescribed value d at a given time t 1 < ter- Following the procedure given at the end of
Section 6, we consider the linearized equation for lI(n+ 1)

dn+1) - 3).(n) L(l + v2)dn+1~(t - r) dr

= 'Y + 3).(n,L(l + p2)!!f(t - r) dr - ,.t(n+ 1)£(3v+ v3)f(t- r) dt

where v is the solution of

v-,.t(n) f~ (3v+v 3 )f(t-r)dr = 'Y.

The auxiliary condition is the design specification

d n + 1)(t d = d.

We consider now functions u\n+ 1) and u\.z"+ 1) satisfying

(33)

(34)

(35)

and

u\.z"+1'-3).(n) L(1 +v2)u\.z"+1~(t-r)dr = - {(3v-v3)f(t-r)dr, (37)

respectively. Clearly we have

(38)

Using equations (35) and (38), we can immediately compute the value of the design param
eter at the n + 1 iteration by means of

).(n+1) = d-u\n+1)(t 1) (39)
u\.z"+ 1)(t1)

for which it is necessary to compute the values of u\n+ 1) and u\.z"+ 1) at t = tl' To do so,
we first reduce equations (34), (36) and (37) to a system of ordinary differential equations.
Remembering that f is given by equation (25), we introduce the following functions

Xi = e- ril {(I +v2 )u\n+1) er,T dr,

Yi = e-r,l {(1+v2)u\.z"+1)er 'Tdr,

Zi = e-r,l {(3V+V 3 )er'T dr,

Wi = e- ril {(I+v2 )Verit dr, i = 1, 2, ... R,

(40)

(41)

(42)

(43)
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where to simplify the notation the superscript n + 1 indicating the number of the iteration
has not been written. Clearly, these four functions satisfy the following system ofdifferential
equations

dx· 2
Xj(O) "'" 0, (44)dt~+ 'jXj = (l + V )14\"+ 1),

dy.
Yi(O) = 0, (45)df+ riYi = (l+V2)U~+1),

dZi 2
2;(0) = 0, (46)<r+rjzj = (3+v lv,t .

dWj 2
w,{O) = 0, (47)-,+r·w· = O+v )0dt ". ,

i = 1,2, ... R. Functions v, Uln + 11 and u~+ I) in equations (34), (36) and (37) can be written
in terms of Xj. Yi' Zj and W;, Le.

R

V = y+,l,(") L Cj2j'
j= 1

R

U(,,+1) - y+3ti1n} " CiX'+Z')
1 - L.J'J J'

j= 1

R

U~+ 1) = L ci3.A(n)Yj-Wj),
j= 1

(48)

(49)

(50)

Equations (48}-{50) follow from the substitution of (40}-{43) in (34), (36) and (37). Now,
integration of the differential initial-value (44}-{47) together with the auxiliary equations
(48H50) yields the two fundamental solutions u\"+ I} and u~+ 1) from which A("+ 1) can be
computed using equation (39).

This procedure is now illustrated numerically by the following example. We consider
the kernel f(t) given by

(51)

and y = 1, .A = 0·100. Then equation (32), conveniently reduced to a system of ordinary
differential equations subject to initial values, yields a deflection u(t). The critical time for
this problem was found to be approximately fer = 1·78. The deflection U at t = 1 was found
to be

u(l) = 1·90490. (52)

Using (52) as a design specification, we integrate the system given by equations (44H47)
together with the auxiliary equations (39), (48H50). The initial approximation for ti was
taken to be ..1.(0) = 0·15. The integration was performed with an Adams-Moulton scheme
using Q.Ol as the step of integration over the interval (0, 1). Six iterations were necessary to
repeat five significant places in the deflection u(t) and the design parameter A. In general, the
number of iterations for a given accuracy will depend on the initial approximation used for
A. The values of the design parameter Aat each step of the iterative process is given in the
table below:
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TABLE 1

n l"'

Initial estimate 0·1500
1 0·1338
2 () 11 54
3 0·1036
4 0-1004
5 0·1000

The associated deflection histories are presented in Fig. 1.

z
o,...
u
'j 2
.....
w

'"
W
-l

'"o
;:1;1

~"'''
f

INITIAL ESTIMATE

EXACT VALUE

DESIGN SPECIFICATION

CRITICAL TIME

~Ol~ 0.150

A ~ 0.100

"10=1.90490

Tcr~ 1.78

FIG. I. Deflection histories associated with each iteration.

9. CONCLUSIONS

The main purpose ofthis study has been to present a thorough treatment ofthe numerical
solution of a class of nonlinear Volterra integro-differential systems associated with prob
lems of structural design in the presence of nonlinear creep.

The study comprises the mathematical formulation of a family of structural design
problems and its numerical treatment by using ideas of quasilinearization and differential
approximation. An efficient quasilinear procedure, that eliminates the need to store the
previous numerical approximation, has been introduced in combination with the reduction
of Volterra integral equations to differential equations subject to initial values, in an effort
to overcome problems of storage typically associated with systems ofVolterra equations.

The example of Section 8 has been presented to familiarize the reader with the applica
tion of the method. The accuracy of the numerical procedures in the present example is
stressed, particularly in view of the fact that the design parameter Ais an unstable functional
of the deflection history u(t), 0 S t :S tl' as t 1 approaches the critical time ter thus making
the determination of ). a highly sensitive process,
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A6cTpaKT-npeAJIaraeTCli H TIuaTeJIbHO HCCJIenyeTcR KJIaCC 3aAa'l MHOrOTO'leHbIMX 3Ha'leHHll:, Bb13b1B
aIOLUHX Boo6LUe HeJIHHell:HbIe HHTerpaJIbHO-AHljlljlepeHUHaJIbHbIe ypaBHeHHR THna BOJIbTeppbI, lIBJIlI
IOLUHMHCR pe3YJIbTaTOM npHMeHeHHll:, npH paC'IeTaX KOHCTpyKUHll:, Y'leTa" HeJIHHell:Holl: nOJI3y'leCTH.
CHa'laJIa, ljlopMyJIHpyeTcR H pelliaeTCli aJIrOpHljlMH'IeCKH, nyTeM KBa3HJIHHeapH3aUHH, HeJIHHell:HaR 3aAa'la
MHOrOTO'leHHOrO 3Ha'leHHR. 3TO npeAJIOlKeHO B 'IaCTRX 2 H 3. PeJIaKCaUHlI nOAPo6HoCTell: npoeKTHpo
BaHHR .lI.aih KJIaCC OnTHMaJIH3aUHH, pellleHHe Koroporo nOA'IepKHyTo B 'IaCTH 4. l..[acTH 5, 6 H 7 nOCBlILUeHbI
paC'IeTHbIM acneKTaM. B 'IaCTH 6, AaeTcR H npHMeHlITCli K 3aAa'le, npH HeKOTopblX yCJIOBHlIX, MeTO.ll. .lI.JIli
y'leTa HeKOTopbIX HeAOCTaTKOB KJIaCCH'IecKoro HCCJIeAOBaHHe HbIOToHa-PaljlcoHa-KaHTopoBH'Ia B
ljlyHKUHOHaJIbHOM rrpOCTpaHCTBe. l..[acTb 7 KacaeTCR CBeAeHHR 60JIblllHX CHCTeM HHTerpaJIbHbIX ypaBHeHHll:
BOJIbTeppbI K AHljlljlepeHUHaJIbHblM CHCTeMaM C lfa'laJIblfblMH 3Ha'leHHlIMH. B 'IaCTH 8 npeACTaBJIlieTCli
'1HCJIOBbIll: npHMep .lI.JIR HJIJIIOCTpaUHH npHMelfHMocTH MeTO.ll.a.


